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We are left with the overall conclusion that Mu and H, despite 
having binding energies and polarizabilities within 0.5% of each 
other, respond in opposite senses toward the uneven electron 
distributions of N-heterocyclic aromatic rings. This results in 
different reaction mechanisms predominating and therefore dif­
ferent reaction products being formed. 
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Carbanion chemistry plays a central role in the whole field of 
organic chemistry:1 many of a large number of carbanions are 
functional carbanions stabilized by heteroatoms,2 including a-
heteroatom-substituted carbanions (A). Reported herein are our 
initial results on the analogous species in silicon chemistry (B). 
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Silyl anions have been studied much less extensively than 
carbanions.3'4 Synthetically useful silyl anions have long been 
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limited to only several simple triorganosilyl anions such as Ph3Si",5,6 

Ph2MeSi",6 PhMe2Si-,6 Me3Si",7 and (Me3Si)3Sr.8 Although 
three functional silyl anions, Cl3Si",9 (RO)nMe3^nSr,10 and 
HPh2Si",11 have been reported, the first two are postulated active 
species generated in situ in the presence of quenching agents, and 
the last is obtained in about 10% yields and tends to polymerize 
readily. Thus, stable functional silyl anions have never been 
prepared. 

Amino groups (X = NR2) were chosen as functional groups 
on silicon because of their high stability toward organometallic 
reagents;12 it was thus anticipated that ammosilyl anions must 
be stable with respect to both intermolecular substitution and 
intramolecular a-elimination to silylene species. It is noted here 
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that recent theoretical studies4b,c have predicted the comparable 
stability of two model systems MeH2Si" and (H2N)H2Si", as well 
as their much higher stability than the corresponding carbanions. 

We have now succeeded in the preparation of three stable 
(amino)(phenyl)silyl anions 1-3 by the standard direct reaction 
of aminochlorosilanes13 4-6 with lithium metal (Scheme I).14 

Thus, the reactions of 4 and 5 with lithium dispersion in THF 
set in at 0 0C to give immediately deep blue-green solutions; after 
4 h, (aminosilyl)lithium 1 and (diaminosilyl)lithium 2 were formed 
in quantitative yields.15 The reaction of 6 proceeded slowly to 
give 3 in 80% yield in 1 day at 0 0C. Significantly, the (ami-
nosilyl)lithium 1 is stable at 0 0C for 6 days, and 2 and 3 are stable 
for 3 days without a drop in activity. 

Functional silyl anions in solution are observable by 13C and 
29Si NMR spectroscopy. Thus, aromatic carbons in (Et2N)-
Ph2SiLi (1) in THF appear at 158.5 (ipso), 135.6 (ortho), 126.6 
(meta), and 123.9 (para) ppm (cyclohexane 8 27.7 ppm as internal 
standard),16 and chemical shift changes from the corresponding 
chlorosilane precursors AS(SiLi - SiCl)4J are +24.3 (ipso), 0 
(ortho), -21 (meta), and -7.3 (para) ppm (positive signs denote 
downfield shifts). The data are quite similar to those for 
MePh2SiLi4J and imply that the Et2N group exhibits essentially 
the same effect as the Me group on the charge distribution in the 
anions. The 29Si resonance of 1 appears at -24.7 ppm in THF 
(TMS as external reference). 

The versatility of the (aminosilyl)lithiums in organosilicon 
chemistry is apparent from some representative transformations 
shown in Scheme II.17 All of the (aminosilyl)lithiums 1-3 undergo 
coupling with a variety of chlorosilanes to form the corresponding 
disilanes 7-12: the Si-N bonds in the primary products can be 
converted into the Si-Cl bonds by mixture with an acyl chloride 
such as acetyl chloride, as exemplified by the transformations from 
7 and 8 to 11 and 12, respectively. A one-step introduction of 
two functional silyl groups into a dichlorosilane and a stepwise 
Si-Si bond elongation by sequential treatment of a chlorosilane 
with (aminosilyl)lithiums are exemplified by the formation of 
trisilanes 13 and 14, respectively. It is noted that all of the 
functional disilanes and trisilanes prepared herein are structurally 
rather simple, but are new compounds barely accessible by con­
ventional methods. 

(Aminosilyl)lithiums are also useful reagents for organic syn­
thesis. Thus, 1 or the corresponding copper reagent serves as the 
hydroxy anion equivalent through the conjugate addition to a,-
/3-unsaturated esters or the allylic substitution followed by oxidative 
cleavage of the silicon-carbon bonds,18 as shown in Scheme III." 
The present procedure is complementary to the known PhMe2Si" 
chemistry,19 which requires an acid treatment prior to the oxi­
dation. In particular, the latter method cannot be applied to allylic 
silane systems, because the acid treatment must cleave the par­
ticular allyl—silicon bond much faster than the phenyl-silicon 
bond.20 The present aminosilyl anion chemistry has afforded a 
solution to this problem. 
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The present development, 40 years after the first practical 
synthesis of silyl anions,5 has opened up the possibility of preparing 
a large variety of functional organosilicon compounds, including 
tailor-made polyfunctional disilanes, oligosilanes, and eventually 
polysilanes of current interest,21 as well as new synthetic reagents 
for organic synthesis. 
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RNA molecules can recognize substrates by forming binding 
pockets and clefts similar to those found in proteins.1 A better 
understanding of RNA-substrate recognition would facilitate the 
development of new ribozymes and receptor molecules based on 
RNA. Most protein enzymes bind substrates with enormous 
specificity, and in many cases the recognition is highly stereose­
lective. Here we show that this high degree of specificity can also 
be achieved by RNA. 

The only well-characterized example of small-molecule rec­
ognition by a macromolecular RNA is the binding of guanosine 
(and its analogues, including arginine) by the self-splicing group 
I intron from Tetrahymena.1 L-Arginine inhibits GTP binding 
and subsequent splicing of group I introns from several organisms 
with a 2-fold higher K1 than the D enantiomer,3 corresponding to 
a AAG of 0.4 kcal mol"1. We have addressed the question of 
stereospecific substrate recognition by RNA by using in vitro 
selection4 to isolate RNA molecules that are able to discriminate 
between D- and L-tryptophan coupled to an agarose matrix (D-
tryptophan agarose, D-Trp-A). We have previously used in vitro 
selection to isolate RNAs and DNAs that specifically bind to small 
organic dye molecules from a large pool of random sequence RNA 
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